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Abstract. Diffusion-limited aggregates are among many important fractal shapes that 
involve deep indentations usually called fjords. To estimate the harmonic measure at the 
bottom of a fjord seems a prohibitive task, but we find that a new mathematical equality 
due to Heurling, Carleson and Jones makes i t  easy. We find that the harmonic measure at 
the bottom of a fjord, as a function of its Euclidean depth, can exhibit a wide range of 
behaviours. We introduce an infinite family of model fjords, for which the equality takes 
a very simple form. In this family the decay of the harmonic mea~ure at their bottoms can 
be, for example, power law, semi-exponential, stretched exponential and exponentially 
stretched exponential. We show that self-affinity or randomness can lead to faster than 
power law decays of the minimal growth probability on boundaries. 

1. Introduction 

The harmonic measure on boundaries, in particular fractal [ 11 ones, is a subject of 
great interest in both mathematics [Z] and physics (e.g. see [3]). Interest in this subject 
has further increased due to the discovery ofthe important role played by the harmonic 

of natural phenomena [4-71. In the basic models for diffusion-limited aggregation 
(DLA) [4] and dielectric breakdown (DHM) [5], the growth of a cluster of atoms is 
determined in a probabilistic manner by the harmonic measure. This measure is the 
normalized charge density on the boundary of the growing cluster, which is assumed 
to be a perfect conductor [5] kept at constant Laplacian potential. There is much 
evidence [4, 5, 8-10] that the clusters grown with these modelsare fractals. The growth 
probability distribution in these models therefore involves harmonic measures on a 
fractal boundary. 

Heuristic [l l] ,  then rigorous [2], arguments, show that the harmonic measure on 
self-similar fractal boundaries has fractal properties. This in the sense that it is a 
restricted multifractal [ 12-16], a prerequisite for which is that the measure of a nested 
sequence of boxes centred at any point on the boundary decreases like a power law. 
Early studies [17-201 of the growth probability distribution on DLA and DHM reported 
such a power law scaling. 

Recent, more careful studies [21-281 of DLA and DHM indicate that the behaviour 
of the harmonic measure in these growth processes is more involved. It is now widely 
believed that the small harmonic measures at the heavily screened bottoms of the deep 

0305-4470/91/081889+13%03.50 0 1991 IOP Publishing Ltd 1889 

m.eacurc in the theoretics! unri_erstand_lng of the fra& growth &s....d 1. 1 divers$ 



1890 

fjords decay faster than power law as a function of the size of the cluster. This behaviour 
is believed to be the cause ofanomalies [21,22] in the multifractal function [12-16]f(a) 
and is known to lead to left-sidedf(a) [15, 16,281. That faster than power law decays 
can occur in the harmonic measure on certain boundaries is known 122, 23, 25, 261. 
It is, however, not yet completely clear which structural forms are causing this apparent 
faster than power law decay in DLA. 

In [27] we pointed out that the lowest growth probabilities, i.e. the regions with 
the smallest harmonic density, do  not only occur in the deepest fjords of DLA, but, in 
general, also occur surprisingly near the most active growth regions. We briefly men- 
tioned there that our observations [27] concerning the smallest probabilities fitted very 
nicely within recent mathematical advances by Carleson and Jones concerning 
Laplacian potentials around fractal boundaries. 

In this paper we discuss a very powerful general method to estimate the harmonic 
measure at the bottom of fjords due to Beurling, Carleson and Jones. This method, 
which relates the distribution of neck widths of the fjord to the measure at its bottom, 
can easily account for the observed location of the sites with the smallest growth 
probabilities in DLA, and their large fluctuations. 

This method of estimation is discussed in the next section, where we use it to show 
that, in general, the harmonic measure at the bottom of fjords can have any behaviour 
as a function of their Euclidean depth, such as power law and exponentially stretched 
exponential. All these behaviours may therefore occur in the harmonic measure on 
random and non-random fractal boundaries. We also discuss an example of the 
harmonic measure on a self-affine fractal boundary, which we show yields stretched 
exponential decay for the minimal harmonic measure. 

In section 3 we define an infinite family of fjord shapes and derive an extremely 
simple formula for the harmonic measure at their bottoms, using the results in section 
2. We then explicitly show the existence of power law, semi-exponential, stretched 
exponential and exponentially stretched exponential decays of this measure in this 
family. We then show in section 3.3 that the Holder a at the bottoms of the fjords for 
which it is finite are distributed in a self-similar fashion, which can be characterized 
by a left-sided f ( a )  [15,16]. 

In section 4 we discuss the typical behaviour of an infinite fjord when the above 
family is provided with the most simple type of Markovian statistics. 

C J G Evertsz et a/ 

2. The ‘Beurling equality’ 

Let z be a boundary point somewhere at the bottom of a fjord in an arbitrary fractal 
curve, like, for example, the DLA fjord in figure 1. Let O(r)  be the (arc-) length of that 
piece of the circle of radius r centred at z having one or more points in common with 
the electric field line connecting z to CO. If we for convenience take the lower spatial 
cut-off of the boundary to be 1, then the harmonic measure pmin of the box of size 1 
at z is approximately equal to 

The extrema1 length Ae is defined by 
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Figure 1. Fjord in a DLA cluster boundary. This is part of the boundary of a square lattice 
cluster on a cylinder with circumference 512. The top arrow indicates the site with the 
maximum harmonic measure and the bottom arrow the one with the lowest measure. 

where rmrr is the radius of the largest circle, centred at z, which still intersects the 
boundary. Equation (1) will be referred to as the Beurling equality [29]. A perhaps 
more simple and transparent formulation of this equation is discussed below equation 
(4) and in figure 5. 

Let us illustrate the use of this equality for two well-known boundaries, namely, a 
cone of size I with internal angle 8 and an a x I rectangle, with one of the short sides 
( a )  left open. For the measure at the bottom of the cone we find 

For the rectangular slit we can approximate the arc lengths by a and find 

pmin(l) = exp( -D I,': d r )  - exp( -: 1 )  

Both these results are in agreement with the known exact results [ 2 5 ] .  
For any real function f ( x )  > 0 for all positive x, one can construct a fjord whose 

borders are defined by f and -f (see figure 2 ) .  This fjord is thus centred around the 
positive real axis and has its bottom at the origin. The quantity O(r) equals 2f(r) for 
such a fjord and by suitably choosing f one can make fjords with harmonic measures 
at their bottoms having almost any functional behaviour as a function of their Euclidean 
depth 1. 
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Figure 2. The Beurling equality estimate3 the harmonic measure p of the lower a part 
of this fjord, which is bounded by a function / ( r ) > O  and - f ( r ) ,  to be p =  
exp[-n 1: dx/(Zf(x))l. See also figure 5 .  

In turns of the Holder exponent a,,, =In pmi,/ln /, where I is, say, the Euclidean 
depth of the gulf, the Beurling equality yields 

Therefore, depending on the behaviour of A,(/ = rmar), amax may not he defined in the 
limit /+CO. In that case there is stronger than power law decay. 

The two examples discussed above underscore the role of lack of scale invariance 
in order to obtain non-power law behaviour. The cone is scale invariant. However, if 
we increase the size I of the slit by a factor c, such that its dimensions become a x cl, 
we only recover the slit of size I through an affine transformation [ l ,  301, i.e. rescaling 
by a factor I /c  in the longitudinal direction and by 1 in the other. A more realistic 
example is provided by the family of clusters depicted in figure 3. These clusters were 
introduced in [lo] as part of a study of self-affinity in DLA and DBM clusters in the 
scaling regime in a cylinder geometry. If the distance between the nth generation sticks 
is chosen to be w, = b", then their heights are h. = w:'~' ,  where w is called the affine 
exponent and b > 1. In figure 3 the base b = 2 and w = In 2/ln 3. The Beurling equality 
can now be used to estimate the harmonic measure (pmjn) of a 1 x 1 square located at 
the bottom of an n-generation cluster. As we have done for the slit, we also here 

11 , , .) ,, 
Figure 3. Skeleton of the trees forming an affine cluster as proposed in [lo] to model DLA. 

The horizontal distance between trees of the nth generation is w. =2". The height of these 
trees is hn = w!,"-'. In this particular case the affine exponent w is log Zjlog 3. For such a 
cluster, the site with minimum growth probability is at the bottom and decays like a 
stretched exponential as a function of the height of the cluster. 
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approximate the arc lengths O ( r )  by the horizontal distance between the sides of the 
fjords and find 

Using the fact that the size I of an n-generation cluster equals h. = b"'", we find power 
law decay pmin - I P - - ,  with amax = v ( b  - l ) / (b  In b) for the scale-invariant case w = 1, 
and stretched exponential decay, i.e. pmin - exp(-C(b)l") for the  affine cases 0 < w < 1, 
with s=l-w and C ( b ) = . r r ( l - b - " " ) / ( l - b " / " ) > O .  

Since a fjord with any dimensions, roughly given by, say a x 1, will repeat itself in 
ever more elongated forms, in a self-affine fractal boundary, we, contrary to the situation 
for exact self-similar boundaries, always expect faster than power law decaying prob- 
abilities in these cases. 

There are numerical indications that w eO.72  [lo, 311 for DLA on a cylinder, which 
would imply that the smallest growth probability would decay like a stretched exponen- 
tial with s=O.28. Although this self-affinity of DBM and DLA on a cylinder implies a 
global breakdown of scale invariance and therefore could account for exponentially 
decaying probabilities, we nevertheless do not believe that the behaviour of the minimal 
growth probability is completely determined by this. The reason is simply that the 
self-affinity discussed in [lo] is modelled by the clusters in figure 3. The predicted 
position for pmin would therefore be at the bottom of the deepest fjords. The fact that 
we found [ 2 7 ]  lowest growth probabilities in the tops of trees clearly indicates that 
this self-affinity is not the principle source of faster than power law decaying pmin. 

3. A model for fjords 

The family of fjord shapes studied here are generated by starting with a square of size 
1, with the top side open. This fjord of depth and width equal to 1 can then develop 
in either of the three ways shown in figures 4(0-c). The width of the fjord is either 

Figure 4. The lower 1 x 1 squares define the bottom~ of the fjords in the model. At each 
stage there are three possible developments: ( a )  the fjord opening doubles, ( b )  remains 
the same or (e)  is halved. The construction is such that the volume added always has the 
farm of square. These fjord shapes can be coded using the digits 2 for doubling, 0 for 
halving and I when the opening remains the same. The fjord with expansion 0.20122 is 
shown in ( d ) .  
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doubled, stays the same or is halved. Therefore, each n-step fjord can be uniquely 
represented by the base 3 sequence of digits corresponding to a triadic subinterval of 
the unit interval [0, 1 1 ,  i.e. a = O . a , o , . .  . a,,, with a j=O,  1.2. In figure 4 ( d )  we show 
the realization of 0.20122. In terms of the partial sums sk = Z f = , ( a ,  - l ) ,  the depth l of 
the fjord becomes 

C J G Evertsr et a1 

/ ( a ) =  2“ 
k = l  

and using the equality in equation ( l ) ,  we find 

(3) 

Equation ( 4 )  illustrates a particular instance of a more general result discussed by 
Carleson and Jones [2], which states that the extremal length A, is approximately equal 
to the minimum number n of disks needed to form a sausage which connects the initial 
disk, covering the region for which the measure is to be estimated, with the outside 
region of the cluster (see figure 5 ) .  The centre of each disk lies on the perimeter of 
the preceeding one and may not intersect with the boundary ofthe fjord. The Euclidean 
depth of the fjord is thus totally irrelevant: it is the extremal length or the number ( n )  
of these Carleson-Jones (CJ) disks that determines the magnitude of the harmonic 
measure in a small domain at the bottom of a fjord. When one examines the zebra 
rendering of the potential field around DLA clusters in [27], it seems that the geometry 
of DLA seems ‘deliberately’ contrived in such a way that the above CJ construction 
becomes completely perspicuous and makes obvious physical sense. With the units 
used in that figure, one CJ disk would cover approximately the domain contained 
between two successive zebra stripes. Each stripe corresponds to a decrease of fi in 
the potential and therefore so will each CJ disk. 

3.1. Behaviour of minimal probability in the modelflords 

We now show that this family of fjords exhibits a wide variety of behaviours of the 
minimal harmonic measure at their bottoms, starting with power law and exponential. 
The fjord 0.22.. .2. is a scale-invariant structure which represents a discrete version 

P(C) 
Figure 5. An estimate of  the extrema1 length A,  is provided by the number n of Carleson- 
Jones disks. The first disk of size E contains the domain far which the harmonic measure 
( + ( E ) )  is to be estimated. The centre of  each one ofthe SucceSsive disks lies an the boundary 
of its successor and has a maximum radius bounded by the condition that i t  does not 
intersect the boundary of the fjord. The Beurling equality yields +(e)=exp(-nn).  
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of a cone. Clearly SL = k and n = In Illn 2. So, from equation (4), one finds pmin - I-"-- 
with amax= m/ln 2. Another scale-invariant structure with the same exponent amax is 

2,OO.. . 02". On the other hand, the 1 x I slit is represented by 0.11. .  . I,,, with 
nd n = 1. Equation (4) therefore yields the expected result, pmin=exp(-d) .  In 

the special case 0.00.. . O,,, the depth of the fjord rapidly converges to 2. The interesting 
scaling variable here is the widths 6, = 2-" of the open end of th 
the smallest neck size. i n  terms of this variabie, we find p, , , (S)  - 
with such infinitely narrow necks will he referred to as bubbles. 

These three cases are well-known possibilities. We now explicitly show the existence 
of two other infinite families of behaviours of pmin in the harmonic measure on these 
fjords. The first is stretched exponential decay, 

pmin - exp(-cp) ( 5 )  

characterized by the exponent 0 < s, with c being some positive constant. This behaviour 
was also found for the affine clusters. The other family, which will be referred to as 
semi-exponential, represents a crossover between the stretched exponential and the 
power law decay (characterized by the exponent a). Its behaviour is 

( 6 )  l-c(l" IIC 
Pmin - 

with the exponent zeta in the range, 1 < c. 
Stretched exponential decay can he obtained from fjords with expansion a, with 

all digits 1 except for the digits i = 1, 1 +x, 1 +I-*,. . , , for which cases ai = 2  (x > I ) .  
For x = 2 ,  the expansion is 0.2121211121.. , . From equation (3) it then follows that 
/ ( a , )  = EE1 ( 2 ~ ) :  with m given by E;=, xi  = n, i.e. m = In n/ln x. Using equation (4), 
one finds that pmin at the bottoms of these fjords behaves like equation ( 5 ) ,  with 
s = I n x / ( l n  x+In2) .  These fjords have the same shapes as those in the stick model 
clusters discussed previously, if one takes b = 2 and w =In 2/(In x + In 2). With this 
subfamily we cannot go beyond s = 1. 

To go beyond s = 1,  we consider a 'chamber and passages' type of configuration. 
Define series u ( k )  of digits by u ( k )  -0102 and call such a series a unit 
(e.g. 4 3 )  = 000222). If the width of a fjor ng of such a unit is, say, W, 
then after the unit it is the same and its total Euclidean length is never increased more 
than 2 W. Let us now study fjords with expansions of the type 0. U, &U,.  . . . For 
example, if we take Uk = u(l) ,  i.e. 0.020202.. . , we get a fjord whose bottom is a 1 x 1 
'chamber' connected by the next 1 x 1 'chamber' by a 4%; 'passage'. One can easily 
show that the choice CJk = u(k") yields pmin - exp(-&+') for x 

Using these 'chamber and passages' fjords, one can also construct exponentially 
stretched exponential decay, i.e. 

0, i.e. s 5 1. 

pmin-exp(-a exp 1 )  
by taking U, = u(exp k).  There may of course be other fjords in this family with similar 
or worse behaviours of pmin. Note that both the exponents a (equation (2)) and 5 
(equation ( 6 ) )  wou!d effectively be m for the above fiords. 

Fjords giving rise to equation ( 6 ) ,  consist of uninterrupted strings of digits 1 with 
consecutive sizes k", k , 2 , .  . . , (x > O ) ,  separated by single digits 2. For x = 1 we 
have 0.121121 1121 11 12 . The length of these fjords is /(aW)=2+f)3F=, 2'k", with 
m given by n = m + Z ; = *  k", i.e. m-n""+') . Now, in general, 
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So for x = 2, one finds I (n )  - 2" , and from equation (4) we find the behaviour of 
equation (6), with t = x + 1. For these fjords the exponent ce would be m ,  while 5 = 0. 
An example of a fjord with (= 1 is discussed in [26]. 

From the above examples it is evident that the family of fjords introduced has a 
rich variety of behaviours of the harmonic measure pmin at their bottoms. All of these 
could therefore occur in the harmonic measure on random structures like DLA and 
DBM and non-random structures like, for example, Julia sets [32]. 

C J G Euertsz et al 
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3.2. Euclidean and extrema1 length 

In figure 6 we show the lengths of fjords corresponding to the base 3 expansions of 
the triadic intervals [j3-", ( j+1)3-") ,  for j = O , .  . . ,3", with n = 7 .  The apparent 
sdf-jiiiiiiariij; ofthis dktribuiioij suggests iiiipiemeiiiing techniques used to characterize 
self-similar measures in order to  classify the different behaviours of I as a function of n. 

200 t 

Figure 6. All possible seven-digit fjords (a = 0.0,. . . . , a,) are uniquely mapped on the 
subintervals of size 3-' ofthe unit interval by interpreting their expansion as base 3 numben. 
So fiord 0.0000000 is the most left interval while 0.2222222 is the one most 10 the right. 
R i b  is a plot of the Euclidean length of these fjords. From equation (4) it follows that the 
behaviour of p,;, is determined by the dependence of this length an the number of digits. 

Let us denote the collection of the nth-generation fjord lengths by { i ~ ( n ) } ~ ~ , .  The 
normalized distribution of lengths at each generation is denoted by {vi( n)}::, , where 
v i ( n ) =  l t ( n ) / L ( n ) ,  and 

To avoid confusion in the future, all quantities related to thef(a)  of the lengths will 
be marked by a hat. For example, the Holder c? of the fjord with length I;(n)  is 
c? = - l / n  In, v ; ( n ) .  The maximum length is associated with the expansion 0.222. .  . 2  
and gives n )  = 2"+' - 1, from which it follows that 
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with &,,,;" = &,j,(m) = In, 7 - 2 In, 2 = 0.5094. The minimal length is associated with 
0.00.. . 0, and in a similar way one finds 

1 
&,,,ax= lim--ln3 7i,i,(n)=ln,7-ln,2=1.1403. 

"-m n 

Since there clearly is only one fjord with the maximum length it follows that?(&,,.) = 0. 
It is also obvious that f(9 = 0) = 1. 

=limn,,-(l/n) In, ( I ( n ) / L ( n ) ) ,  it follows that & =&,., forall fjords with 
lengths I ( n )  such that limn+-- ( l / n )  In, I ( n )  = 0. In the following section (see equation 
(12)) we show that, with probability 1, I ( n ) - Z W  for n+m. This implies that 
f(&,A = 1. Wetherefore conjecture that?(&) reaches itsmaximum value 1 at = &,ax. 

To estimate f ( & )  numerically we used a method [33] based on moments of the 
measure. The partition function i ( q ,  n) = X : l l  7 i ? ( n )  is used to define the quantities 
& ( q , n ) = i - ' ( q , n ) X : l ,  , r?(n)ln 7 i , ( n )  and f ( q ,  n)=qa ' (q ,  n ) - i ( q ,  n ) ,  where 
6(9, n )  =In i ( q ,  n ) .  To better see the effects of finite n, o?e can consider the effective 
exponents [16] &. (q )=(a ' (q ,n+ l ) -&(q ,n) ) / ln3  and f.(q), which is defined in a 
similar fashion. In figure 7, we show the exact numerical results for fn(&"), for n = 1 
and 9, and the corresponding flows for certain values of 9 and n = 1,2,. . . 9 .  The range 
of q values is from -30 to 30 for both n = 1 and 9. The considerable finite-size effect 
was to be expected from equation (7). Nevertheless, the flow seems to be in agreement 
with the above conjecture on the asymptotic shape of I ( ; ) ,  

From 

0.6 0 . 8 - 1 . 0  1.2 a 
Figure 1. The .?(a) of the apparently self-similar length distribution shown in figure 6 is 
determined by normalizing the distribution to 1. There are considerable finite-size effects, 
which are illustrated by the Row of the resulting functions for an increasing number of 
digits n = I . . . 9 .  We infer the existence of a limit from our analytical studies of &," and 

The eract values o f  S,,, and Smax are marked by crosses. The ?(6;,,,) is a lower 
bound. .?(SI determines the increase, with n, of the number of fiords whose normalized 
length increase is determined by the exponent 6. 

For the minimal probability at the bottom of the fjords the above f(&) has the 
following meaning. The normalized length of a fjord i of Holder U^ scales like 7it - 
( 3 - " ) a ,  The actual length therefore scales like 

(8) / a ( n )  - (3 - " ) " (n )  = 3""L-"'. 
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Inverting this, one finds that 

C J G Eoertsz et af 

The Holder a (equation (2)), characterizing the scaling behaviour of the harmonic 
measure at the bottom of a fjord of type & is therefore 

?r 
a(/&)= 

- Z) In 3 

where we used equation (4). So the Holder a for the harmonic measure at the bottom 
of this family of fjords can take-values from LY = ?r/ln 2 ~ 4 . 5 3  to m. The f(&) can be 
transformed into anf( a) b y f = f  and a = a( I $ ) .  The above conjecture on the behaviour 
o f f (  &) near would imply 'that a(q = 0) = 00 and that f ( a )  goes asymptotically 
to 1. In figure 8 we plot the result of the transformation of the n = 1 and 9 curves from 
figure 7. 

t I  

0 5 IO 15 

4 6 )  
Figure 8. There are jd nth generation fjords in this family giving rise to a HGlder e at 
their bottoms. These two cumes are simple transformations (equation (IO)) of the n = 1 
and 9 curves in figure 7.  Note the left-sidedness of this curve, which becomes degenerate 
for the rjords with faster than power law decaying bottom measures, i.e. a = W. 

The typical absolute minimum growth probability in this fjord family decays as 
pmin-c'/-''"' (see equation (12)). If the fjords of a hypothetical cluster are of this 
family, then the collection of pmin at their bottoms would yield a left-sidedf(a) [IS, 161, 
as shown in figure 7. The left side of the f (  a) is determined by the fjords with power 
law decaying pmin and the non-existent right-hand side reflects the presence of fjords 
with pmin decaying faster than power law with the depth of the fjord, i.e. a = m. In 
the previous section we showed th,e existence of at least three subfamilies of fjords 
with such behaviour. The above f(&) is incapable of distinguishing between these 
possibilities since all have 6 Also, t h e f ( a )  cannot distinguish between them, 
since their Holder 

In P a = lim-= m 
I-- In I 
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is undefined. Classifying these types of behaviours would involve stronger 
normalizations, like in 

In( -In p )  
s = lim 

I - -  In / 

and 

In( -In p )  5 = lim 
I + -  In(lnI) 

which will not be considered here. The bubble configurations with extremely narrow 
openings are worse, in the sense that they cannot be renormalized by any function of 
1. The renormalization needed for the small harmonic measures on DLA is discussed 
in [28]. 

3.3. Asymptotic or ‘typical’ behaviours 

Evidently, the probability for a particular fjord shape to occur, in general, depends 
on the boundary under consideration. We here consider the very simple case where 
the statistics of the fjords is determined by probabilities P, (X& P, = 1) for the kth 
digit in their expansion (I to be i = 0 , 1 , 2  with k = 1,2, .  . . . The measure induced on 
the unit interval [0, 11 is thus a simple multiplicative multifractal measure, E. To avoid 
confusion with previous f ( a ) ,  we now use a tilde (e.g. 6)  to mark quantities related 
to this measure. For P,>O,  i = O ,  1,2,  all fjords are possible, but, in general, with 
different probabilities. 

consists of those with 
n j  = P,n digits i = O ,  1,2. (This is the subset 6 ( l )  with information dimension 6, = 
- (Po In Po+ P, In P,+ Pz In P,) / ln  3.) The subsets 6 are, however, degenerate with 
respect to the behaviour of the harmonic measure at their bottoms. Namely, in 
the case P o = P ,  = P2,  i.e. n , = n , = n , ,  the pmin at the bottom of fjord 
0.2.. .2.,1 . . . ln, 0 . .  .O, will have power law behaviour, while 0.2020.. ,201 _.  . 1 
behaves exponentially and 0.0.. . O l  . .  . 1 2 . .  . 2  is a bubble bounded in length. On the 
other hand, for n, > no,  all the fjords give rise to power law behaviour, in the limit 
n +oo. For n2< no, the length of 0.2.. .21  . . . 10. .  . O  will scale like l - 2 “ 2 ,  and pmin 
has power law behaviour, while 0.1 . . . 12020. . .20 00.. . 0 yields I -  n, implying 
exponential decay for pmin. In view of the fact that we are interested here in the 
behaviour of pmin, a classification of the fjords in terms of a‘ would be meaningless. 

The Euclidean depth / (a , )  of a fjord given in equation (3), can be bounded by 

For large n, the subset of fjords carrying all the measure 

2 ’ - - < I ( a , ) ~  n2’.- (11) 

where 

s,,,= max { s x } .  
X = l .  . . .  n 

For large n, there are n* = n (  1 - P , )  digits equal to 0 or 2. These are the only digits 
which contribute to the partial sums s k ,  and they appear respectively with probabilities 
P X = P o / ( P o + P , )  and P ; =  1 -Po*. Their statistics are thus the same as that of, for 
example, the asymmetric or Bernoulli random walk in d = 1, with probability P8 to 
step to the left and P f  to step to the right. In this language, smHx is the maximum 
positive displacement of this n*-step random walk. 
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For Pa= P2 and thus P i  = Pf it is known 1341 that, with robability 1, this s,,, is 
of the order of d&, where the standard deviation D =&= 1. From approxi- 
mation (11) we thus find 

(12) 
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2fi < , < n2G 

with A = [2(1 -Pi)]-'. For all P, < 1, one therefore expects, using equation (4), that 
the asymptotic behaviour 

(13) 
with c = r ( l n  2)-*(1- P , ) - ' / 2  and c' some constant. This is a behaviour in between 
power law and exponential. 

In the case P 2 > P o ,  the partial sums are dominated by drift. The maximum 
displacement is therefore of the order En and, from equation (]I) ,  one finds 

2"'"</<n2"'A (14) 

with A =  1/1&1 and E = P ~ - P ~ .  Asymptotically one therefore expects power law 
behaviour pmin= I-"-- ,  with cymsx= r/(& In 2). 

For P 2 < P , ,  the drift is towards -m. Therefore s,,,= 1, and asymptotically one 
therefore expects that 2 < 1 < 2n. In this case, the Euclidean depth of the fjord saturates 
and its opening is pinched off, resulting in bubbles in the limit of large n. 

In general, we can thus distinguish three types of asymptotic behaviours for pm," 
at the bottoms ofthe fjords in this model when it is endowed with the above (Markovian) 
statistics, namely, 

, =c',-'l"l 
,"I" 

bubble formation p2 < Po 
semi-exponential P2 = Po (15) =c'"''"' r ;.[-%*. powerlaw P2> Po. 

P m i n  = 

These asymptotic behaviours occur with probability 1 and in this sense could be called 
'typical', a term often encountered in recent DLA literature [21, 22, 261. 

It is possible to use fixed-scale transformation [35] techniques to estimate effective 
values for Po, P ,  and P2 for DLA within the above-discussed Markovian framework. 
However, a discussion of this lies outside the scope of this paper and will be reported 
elsewhere. 

4. Summary and discussion 

The Beurling equality pinpoints exactly the intricate relation between the geometry of 
(the fjords of) a boundary and the behaviour of the minimum harmonic measures. It 
not only shows which properties of a fjord's shape determine the harmonic measure 
at its bottom, hut also provides an estimate. The power law, semi-exponential and 
exponential decays of the harmonic measure found at the bottoms of our family of 
fjords can in principle be found on any boundary like, for example, that of Julia sets 
or DLA. 

We have given an example of an infinite family of fjord shapes, whose individual 
elements show a wide variety of behaviours of the harmonic measure at their bottoms. 
In the case P2= Po, which we considered in detail in section 3.3, thef(a)  which would 
arise from an ensemble ofsuch fjords would be leftsided. The subset offjords accounting 
for the left part of the /(a) shown in figure 8, has power law decaying probabilities 
and the right-hand side consists of faster than power law decays. That the typical 
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behaviour was found to be pmin- c'l"'"' implies that if one were to randomly pick 
out a fjord in this ensemble its bottom probability pmin would have this particular 
asymptotic behaviour. 

Although the harmonic measure on exactly self-similar boundaries is always charac- 
terized by power laws, statistical self-similarity, through suitable fluctuations in the 
neck widths of the fjords, may result in deviations. 
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